10-1. Determine the reactions at the supports A and B. $E I$ is constant.

Support Reactions: FBD(a).

$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0$
$+\uparrow \sum F_{y}=0 ; \quad A_{y}+B_{y}-\frac{w_{\mathrm{o}} L}{2}=0$
$\varsigma+\sum M_{A}=0 ; \quad B_{y} L+M_{A}-\frac{w_{\mathrm{o}} L}{2}\left(\frac{L}{3}\right)=0$

Method of Superposition: Using the method of superposition as discussed in Chapter 4, the required displacements are
$v_{B}{ }^{\prime}=\frac{w_{\mathrm{o}} L^{4}}{30 E I} \downarrow \quad v_{B}{ }^{\prime \prime}=\frac{B_{y} L^{3}}{3 E I} \uparrow$
The compatibility condition requires

$$
\begin{aligned}
(+\downarrow) \quad & =v_{B}{ }^{\prime}+v_{B}{ }^{\prime \prime} \\
0 & =\frac{w_{o} L^{4}}{30 E I}+\left(-\frac{B_{y} L^{3}}{3 E I}\right) \\
B_{y} & =\frac{w_{0} L}{10}
\end{aligned}
$$

Substituting B_{y} into Eqs. [1] and [2] yields.

$$
A_{y}=\frac{2 w_{0} L}{5} \quad M_{A}=\frac{w_{\mathrm{o}} L^{2}}{15}
$$

Ans.

Ans.

Ans.

10-2. Determine the reactions at the supports A, B, and C, then draw the shear and moment diagrams. $E I$ is constant.

Support Reactions: $\operatorname{FBD}(\mathrm{a})$.

$$
\begin{array}{lc}
\xrightarrow{+} \sum F_{x}=0 ; & C_{x}=0 \\
+\uparrow \sum F_{y}=0 ; & A_{y}+B_{y}+C_{y}-12-36.0=0 \\
\varsigma+\sum M_{A}=0 ; & B_{y}(12)+C_{y}(24)-12(6)-36.0(18)=0 \tag{2}
\end{array}
$$

Ans.

Method of Superposition: Using the method of superposition as discussed in Chapter 4, the required displacements are

$$
\begin{aligned}
v_{B}^{\prime} & =\frac{5 w L^{4}}{768 E I}=\frac{5(3)\left(24^{4}\right)}{768 E I}=\frac{6480 \mathrm{kip} \cdot \mathrm{ft}^{3}}{E I} \downarrow \\
v_{B}^{\prime \prime} & =\frac{P b x}{6 E I L}\left(L^{2}-b^{2}-x^{2}\right) \\
& =\frac{12(6)(12)}{6 E I(24)}\left(24^{2}-6^{2}-12^{2}\right)=\frac{2376 \mathrm{kip} \cdot \mathrm{ft}^{3}}{E I} \downarrow \\
v_{B}^{\prime \prime \prime} & =\frac{P L^{3}}{48 E I}=\frac{B_{y}\left(24^{3}\right)}{48 E I}=\frac{288 B_{y} \mathrm{ft}^{3}}{E I} \uparrow
\end{aligned}
$$

The compatibility condition requires

$$
\begin{aligned}
(+\downarrow) \quad 0 & =v_{B}{ }^{\prime}+v_{B}{ }^{\prime \prime}+v_{B}{ }^{\prime \prime \prime} \\
0 & =\frac{6480}{E I}+\frac{2376}{E I}+\left(-\frac{288 B_{y}}{E I}\right) \\
B_{y} & =30.75 \mathrm{kip}
\end{aligned}
$$

Substituting B_{y} into Eqs. [1] and [2] yields,

$$
A_{y}=2.625 \mathrm{kip} \quad C_{y}=14.625 \mathrm{kip}
$$

Ans.

$x(f t)$

10-3. Determine the reactions at the supports A and B. $E I$ is constant.

Ans.
[1]
[2]

Method of Superposition: Using the method of superposition as discussed in Chapter 4, the required displacements are

$$
v_{B}^{\prime}=\frac{7 w L^{4}}{384 E I} \downarrow \quad v_{B}^{\prime \prime}=\frac{P L^{3}}{3 E I}=\frac{B_{y} L^{3}}{3 E I} \uparrow
$$

The compatibility condition requires

$$
\begin{aligned}
(+\downarrow) & =v_{B}{ }^{\prime}+v_{B}^{\prime \prime} \\
0 & =\frac{7 w L^{4}}{384 E I}+\left(-\frac{B_{y} L^{3}}{3 E I}\right) \\
B_{y} & =\frac{7 w L}{128}
\end{aligned}
$$

Substituting B_{y} into Eqs. [1] and [2] yields,

$$
A_{y}=\frac{57 w L}{128} \quad M_{A}=\frac{9 w L^{2}}{128}
$$

Ans.

Ans.

Ans.
A.

10-4. Determine the reactions at the supports A, B, and C; then draw the shear and moment diagrams. $E I$ is constant.

Support Reactions: FBD(a).

$\xrightarrow{+} \quad \sum F_{x}=0 ;$
$A_{x}=0$
$+\uparrow \sum F_{y}=0 ;$
$A_{y}+B_{y}+C_{y}-2 p=0$
$\zeta+\sum M_{A}=0 ; \quad B_{y} L+C_{y}(2 L)-P\left(\frac{L}{2}\right)-P\left(\frac{3 L}{2}\right)=0$
Moment Functions: $\mathrm{FBD}(\mathrm{b})$ and (c).

$$
\begin{aligned}
& M\left(x_{1}\right)=C_{y} x_{1} \\
& M\left(x_{2}\right)=C_{y} x_{2}-P x_{2}+\frac{P L}{2}
\end{aligned}
$$

Ans.
[2]

*10-4. Continued

Slope and Elastic Curve:

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)
$$

For $M\left(x_{1}\right)=C_{y} x_{1}$,

$$
\begin{align*}
E I \frac{d^{2} v_{1}}{d x_{1}^{2}} & =C_{y} x_{1} \\
E I \frac{d v_{1}}{d x_{1}} & =\frac{C_{y}}{2} x_{1}^{2}+C_{1} \tag{3}\\
E I v_{1} & =\frac{C_{y}}{6} x_{1}^{3}+C_{1} x_{1}+C_{2} \tag{4}
\end{align*}
$$

For $M\left(x_{2}\right)=C_{y} x_{2}-P x_{2}+\frac{P L}{2}$,

$$
\begin{align*}
E I \frac{d^{2} v_{2}}{d x_{2}^{2}} & =C_{y} x_{2}-P x_{2}+\frac{P L}{2} \\
E I \frac{d v_{2}}{d x_{2}} & =\frac{C_{y}}{2} x_{2}^{2}-\frac{P}{2} x_{2}^{2}+\frac{P L}{2} x_{2}+C_{3} \tag{5}\\
E I v_{2} & =\frac{C_{y}}{6} x_{2}^{3}-\frac{P}{6} x_{2}^{4}+\frac{P L}{4} x_{2}^{2}+C_{3} x_{2}+C_{4} \tag{6}
\end{align*}
$$

Boundary Conditions:

$v_{1}=0$ at $x_{1}=0 . \quad$ From Eq. [4] $\quad C_{2}=0$
Due to symmetry, $\frac{d v_{2}}{d x_{2}}=0$ at $x_{2}=L . \quad$ From Eq. [5],

$$
0=\frac{C_{y} L^{2}}{2}-\frac{P L^{2}}{2}+\frac{P L^{2}}{2}+C_{3} \quad C_{3}=\frac{C_{y} L^{2}}{2}
$$

$v_{2}=0$ at $x_{2}=L . \quad$ From Eq. [6],

$$
\begin{gathered}
0=\frac{C_{y} L^{3}}{6}-\frac{P L^{3}}{6}+\frac{P L^{3}}{4}+\left(-\frac{C_{y} L^{2}}{2}\right) L+C_{4} \\
C_{4}=\frac{C_{y} L^{3}}{3}-\frac{P L^{3}}{12}
\end{gathered}
$$

Continuity Conditions:

At $x_{1}=x_{2}=\frac{L}{2}, \quad \frac{d v_{1}}{d x_{1}}=\frac{d v_{2}}{d x_{2}}$. From Eqs. [3] and [5],

$$
\begin{aligned}
\frac{C_{y}}{2}\left(\frac{L}{2}\right)^{2}+C_{1} & =\frac{C_{y}}{2}\left(\frac{L}{2}\right)^{2}-\frac{P}{2}\left(\frac{L}{2}\right)^{2}+\frac{P L}{2}\left(\frac{L}{2}\right)-\frac{C_{y} L^{2}}{2} \\
C_{1} & =\frac{P L^{2}}{8}-\frac{C_{y} L^{2}}{2}
\end{aligned}
$$

At $x_{1}=x_{2}=\frac{L}{2}, \quad v_{1}=v_{2}$. From Eqs. [4] and [6].

$$
\frac{C_{y}}{6}\left(\frac{L}{2}\right)^{3}+\left(\frac{P L^{2}}{8}-\frac{C_{y} L^{2}}{2}\right)\left(\frac{L}{2}\right)
$$

*10-4. Continued

$$
\begin{gathered}
=\frac{C_{y}}{6}\left(\frac{L}{2}\right)^{3}-\frac{P}{6}\left(\frac{L}{2}\right)^{3}+\frac{P L}{4}\left(\frac{L}{2}\right)^{2}+\left(-\frac{C_{y} L^{2}}{2}\right)\left(\frac{L}{2}\right)+\frac{C_{y} L^{3}}{3}-\frac{P L^{3}}{12} \\
C_{y}=\frac{5}{16} P
\end{gathered}
$$

Ans.

Substituting C_{y} into Eqs. [1] and [2],

$$
B_{y}=\frac{11}{8} P \quad A_{y}=\frac{5}{16} P
$$

Ans.

10-5. Determine the reactions at the supports, then draw the shear and moment diagram. $E I$ is constant.

Support Reactions: FBD(a)

$\xrightarrow{+} \sum F_{x}=0 ;$
$A_{x}=0$
$+\uparrow \sum F_{y}=0 ;$
$B_{y}-A_{y}-P=0$
$\zeta+\sum M_{B}=0 ; \quad A_{y} L-M_{A}-P L=0$
Ans.
[1]
[2]

Moment Functions: FBD(b) and (c).

$$
\begin{aligned}
& M\left(x_{1}\right)=-P x_{1} \\
& M\left(x_{2}\right)=M_{A}-A_{y} x_{2}
\end{aligned}
$$

(c)

10-5. Continued

Slope and Elastic Curve:

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)
$$

For $M\left(x_{1}\right)=-P x_{1}$.

$$
\begin{gather*}
E I \frac{d^{2} v_{1}}{d x_{1}^{2}}=-P x_{1} \\
E I \frac{d v_{1}}{d x_{1}}=-\frac{P}{2} x_{1}^{2}+C_{1} \tag{3}\\
E I v_{1}=-\frac{P}{6} x_{1}^{3}+C_{1} x_{1}+C_{2} \tag{4}
\end{gather*}
$$

For $M\left(x_{2}\right)=M_{A}-A_{y} x_{2}$

$$
\begin{align*}
& E I \frac{d^{2} v_{2}}{d x_{2}^{2}}=M_{A}-A_{y} x_{2} \\
& E I \frac{d v_{2}}{d x_{2}}=M_{A} x_{2}-\frac{A_{y}}{2} x_{2}^{2}+C_{3} \tag{5}\\
& E I v_{2}=\frac{M_{A}}{2} x_{2}^{2}-\frac{A_{y}}{6} x_{2}^{3}+C_{3} x_{2}+C_{4} \tag{6}
\end{align*}
$$

Boundary Conditions:

$v_{2}=0$ at $x_{2}=0 . \quad$ From Eq. [6], $\quad C_{4}=0$
$\frac{d v_{2}}{d x_{2}}=0$ at $x_{2}=0 . \quad$ From Eq. [5], $\quad C_{3}=0$
$v_{2}=0$ at $x_{2}=L . \quad$ From Eq. [6].

$$
\begin{equation*}
0=\frac{M_{A} L^{2}}{2}-\frac{A_{y} L^{3}}{6} \tag{7}
\end{equation*}
$$

Solving Eqs. [2] and [7] yields.

$$
M_{A}=\frac{P L}{2} \quad A_{y}=\frac{3 P}{2}
$$

Ans.

Substituting the value of A_{y} into Eq. [1],

$$
B_{y}=\frac{5 P}{2}
$$

Ans.

Note: The other boundary and continuity conditions can be used to determine the constants C_{1} and C_{2} which are not needed here.

10-6. Determine the reactions at the supports, then draw the moment diagram. Assume B and C are rollers and A is pinned. The support at B settles downward 0.25 ft . Take $E=29\left(10^{3}\right) \mathrm{ksi}, I=500 \mathrm{in}^{4}$.

Compatibility Equation. Referring to Fig. a,

$$
\begin{aligned}
{\Delta^{\prime}}_{B}=\frac{5 w L_{A C}^{4}}{384 E I} & =\frac{5(3)\left(24^{4}\right)}{384 E I}=\frac{12960 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \\
& =\frac{12960\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(500 \mathrm{in}^{4}\right)} \\
& =1.544 \mathrm{in} \downarrow
\end{aligned}
$$

$$
f_{B B}=\frac{L_{A C}^{3}}{48 E I}=\frac{24^{3}}{48 E I}=\frac{288 \mathrm{ft}^{3}}{E I}
$$

$$
=\frac{288\left(12^{3}\right) \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(500 \mathrm{in}^{4}\right)}
$$

$$
=0.03432 \frac{\mathrm{in}}{\mathrm{k}} \uparrow
$$

Using the principle of superposition,

$$
\begin{gathered}
\Delta_{B}=\Delta_{B}^{\prime}+B_{y} f_{B B} \\
(+\downarrow) 0.25 \text { in }=1.544 \text { in }+B_{y}\left(-0.03432 \frac{\mathrm{in}}{\mathrm{k}}\right) \\
B_{y}=37.72 \mathrm{k}=37.7 \mathrm{k}
\end{gathered}
$$

II

$+$

Ans.

(a)

10-6. Continued

Equilibrium. Referring to the FBD in Fig. b

$$
\begin{array}{ll}
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; & A_{x}=0 \\
\varsigma+\sum M_{A}=0 ; & C_{y}(24)+37.72(12)-3(24)(12)=0 \\
& C_{y}=17.14 \mathrm{k}=17.1 \mathrm{k} \\
+\uparrow \sum F_{y}=0 ; & A_{y}+37.72+17.14-3(24)=0 \\
& A_{y}=17.14 \mathrm{k}=17.1 \mathrm{k}
\end{array}
$$

Ans.

Ans.

Ans.

10-7. Determine the deflection at the end B of the clamped A-36 steel strip. The spring has a stiffness of $k=2 \mathrm{~N} / \mathrm{mm}$. The strip is 5 mm wide and 10 mm high. Also, draw the shear and moment diagrams for the strip.

$I=\frac{1}{12}(0.005)(0.01)^{3}=0.4166\left(10^{-9}\right) \mathrm{m}^{4}$
$\left(\Delta_{B}\right)_{1}=\frac{P L^{3}}{3 E I}=\frac{50\left(0.2^{3}\right)}{3(200)\left(10^{9}\right)(0.4166)\left(10^{-9}\right)}=0.0016 \mathrm{~m}$
$\left(\Delta_{B}\right)_{2}=\frac{P L^{3}}{3 E I}=\frac{2000 \Delta_{B}\left(0.2^{3}\right)}{3(200)\left(10^{9}\right)(0.4166)\left(10^{-9}\right)}=0.064 \Delta_{B}$

Compatibility Condition:

$+\downarrow \Delta_{B}=\left(\Delta_{B}\right)_{1}-\left(\Delta_{B}\right)_{2}$
$\Delta_{B}=0.0016-0.064 \Delta_{B}$
$\Delta_{B}=0.001503 \mathrm{~m}=1.50 \mathrm{~mm}$
Ans.
$B_{y}=k \Delta_{B}=2(1.5)=3.00 \mathrm{~N}$

*10-8. Determine the reactions at the supports. The moment of inertia for each segment is shown in the figure. Assume the support at B is a roller. Take $E=29\left(10^{3}\right) \mathrm{ksi}$.

Compatibility Equation:

$(+\downarrow) \quad \Delta_{B}-B_{y} f_{B B}=0$
Use conjugate beam method:
$C+\sum M_{B}{ }^{\prime}=0 ; \quad M_{B}{ }^{\prime}+\frac{2160}{E I_{A B}}(9)+\frac{1620}{E I_{A B}}(12)=0$
$\Delta_{B}=M_{B}{ }^{\prime}=-\frac{38880}{E I_{A B}}$
$\varsigma+\sum M_{B}{ }^{\prime}=0 ; \quad M_{B}{ }^{\prime}-\frac{162}{E I_{A B}}(12)=0$
$f_{B B}=M_{B}{ }^{\prime}=\frac{1944}{E I_{A B}}$
From Eq. $1 \quad \frac{38880}{E I_{A B}}-\frac{1944}{E I_{A B}} B_{y}=0$

$$
B_{y}=20 \mathrm{k}
$$

$$
A_{y}=10 \mathrm{k}
$$

$$
M_{A}=60 \mathrm{k} \cdot \mathrm{ft}
$$

$$
A_{x}=0
$$

Ans.
Ans.
Ans.
Ans.

10-9. The simply supported beam is subjected to the loading shown. Determine the deflection at its center C. $E I$ is constant.

Elastic Curves: The elastic curves for the uniform distributed load and couple moment are drawn separately as shown.

Method of Superposition: Using the method of superposition as discussed in Chapter 4, the required displacements are

$$
\begin{aligned}
\left(\Delta_{C}\right)_{1} & =\frac{-5 w L^{4}}{768 E I}=\frac{-5(6)\left(16^{4}\right)}{768 E I}=\frac{2560 \mathrm{kip} \cdot \mathrm{ft}^{3}}{E I} \downarrow \\
\left(\Delta_{C}\right)_{2} & =\frac{M_{o} x}{6 E I L}\left(x^{2}-3 L x+2 L^{2}\right) \\
& =-\frac{5(8)}{6 E I(16)}\left[8^{2}-3(16)(8)+2\left(16^{2}\right)\right] \\
& =\frac{80 \mathrm{kip} \cdot \mathrm{ft}^{3}}{E I} \downarrow
\end{aligned}
$$

The displacement at C is

$$
\begin{aligned}
\Delta_{C} & =\left(\Delta_{C}\right)_{1}+\left(\Delta_{C}\right)_{2} \\
& =\frac{2560}{E I}+\frac{80}{E I} \\
& =\frac{2640 \mathrm{kip} \cdot \mathrm{ft}^{3}}{E I}
\end{aligned}
$$

10-10. Determine the reactions at the supports, then draw the moment diagram. Assume the support at B is a roller. $E I$ is constant.

$\left(\Delta_{c}\right)$,
$+$

Ans.

Compatibility Equation:

$(+\downarrow) \quad \Delta_{B}-2_{B}-B_{y} f_{B B}=0$
Use conjugate beam method:

$$
\begin{array}{ll}
\zeta+\sum M_{B}^{\prime}=0 ; & M_{B}^{\prime}+\frac{3200}{E I}(4)=0 \\
& \Delta_{B}=M_{B}^{\prime}=-\frac{12800}{E I} \\
\zeta+\sum M_{B}^{\prime}=0 ; & M_{B}^{\prime}-\frac{32}{E I}(5.333)=0 \\
& f_{B B}=M_{B}^{\prime}=\frac{170.67}{E I}
\end{array}
$$

10-10. Continued

From Eq. $1 \frac{12800}{E I}-B_{y}\left(\frac{170.67}{E I}\right)=0$

$$
\begin{aligned}
B_{y} & =75 \mathrm{lb} \\
A_{x} & =0 \\
A_{y} & =75 \mathrm{lb} \\
M_{A} & =200 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

$M(16 . f t)$
Ans.
Ans.
Ans.
Ans.

10-11. Determine the reactions at the supports, then draw the moment diagram. Assume A is a pin and B and C are rollers. $E I$ is constant.

Compatibility Equation:

$(+\downarrow) \quad \Delta_{B}-B_{y} f_{B B}=0$
Use virtual work method:
$\Delta_{B}=\int_{0}^{L} \frac{m M}{E I} d x=2 \int_{0}^{15} \frac{\left(4.5 x-0.00667 x^{3}\right)(-0.5 x)}{E I} d x=-\frac{4050}{E I}$
$f_{B B}=\int_{0}^{L} \frac{m m}{E I} d x=2 \int_{0}^{15} \frac{(-0.5 x)^{2}}{E I} d x=\frac{562.5}{E I}$
From Eq. $1 \quad \frac{4050}{E I}-B_{y} \frac{562.5}{E I}=0$

$$
B_{y}=7.20 \mathrm{k}
$$

$A_{y}=0.900 \mathrm{k}$
$A_{x}=0$
$C_{y}=0.900 \mathrm{k}$

Ans.

Ans.
Ans.
Ans.

*10-12. Determine the reactions at the supports, then draw the moment diagram. Assume the support at A is a pin and B and C are rollers. $E I$ is constant.

Compatibility Equation:

$$
\begin{equation*}
(+\downarrow) \quad \Delta_{B}-B_{y} f_{B B}=0 \tag{1}
\end{equation*}
$$

Use virtual work method:

$$
\begin{aligned}
\Delta_{B}=\int_{0}^{L} \frac{m M}{E I} d x= & \int_{0}^{10} \frac{\left(-0.5556 x_{1}\right)\left(19.35 x_{1}\right)}{E I} d x_{1} \\
& +\int_{0}^{10} \frac{\left(-5.556-0.5556 x_{2}\right)\left(193.5+9.35 x_{2}\right)}{E I} d x_{2} \\
& +\int_{0}^{25} \frac{\left(-0.4444 x_{3}\right)\left(21.9 x_{3}-0.01667 x_{3}^{3}\right)}{E I} d x_{3} \\
= & -\frac{60263.53}{E I}
\end{aligned}
$$

$$
\begin{aligned}
f_{B B} & =\int_{0}^{10} \frac{\left(-0.5556 x_{1}\right)^{2}}{E I} d x_{1}+\int_{0}^{25} \frac{\left(-0.4444 x_{3}\right)^{2}}{E I} d x_{3}+\int_{0}^{10} \frac{\left(-5.556-0.5556 x_{2}\right)^{2}}{E I} d x_{2} \\
& =\frac{1851.85}{E I}
\end{aligned}
$$

From Eq. 1

$$
\begin{aligned}
& \frac{60262.53}{E I}-B_{y} \frac{1851.85}{E I}=0 \\
& B_{y}=32.5 \mathrm{k} \\
& A_{x}=0 \\
& A_{y}=1.27 \mathrm{k} \\
& C_{y}=7.44 \mathrm{k}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.

10-13. Determine the reactions at the supports. Assume A and C are pins and the joint at B is fixed connected. $E I$ is constant.

$$
\begin{aligned}
\Delta^{\prime} C_{n}=\int_{0}^{L} \frac{m M}{E I} d x & =\int_{0}^{18 \mathrm{ft}} \frac{\left(0.5 x_{1}\right)\left(31.5 x_{1}-2 x_{1}^{2}\right)}{E I} d x_{1}+\int_{0}^{9 \mathrm{ft}} \frac{\left(x_{2}\right)\left(-x_{2}^{2}\right)}{E I} d x_{2} \\
& =\frac{2733.75}{E I} \rightarrow \\
f_{C C}=\int_{0}^{L} \frac{m m}{E I} d x & =\int_{0}^{18 \mathrm{ft}\left(0.5 x_{1}\right)\left(0.5 x_{1}\right)} \\
E I & \\
& =\frac{729}{E I} \rightarrow
\end{aligned}
$$

Using the principle of superposition,

$\Delta_{C_{n}}=\Delta^{\prime}{ }_{C n}+C_{x} f_{C C}$
$O=\frac{2733.75}{E I}+C_{x}\left(\frac{729}{E I}\right)$
$C_{x}=-3.75 \mathrm{k}=3.75 \mathrm{k} \leftarrow$

Equilibrium: Referring to the FBD of the frame in Fig. d,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-2(9)-3.75=0
$$

$$
A_{x}=21.75 \mathrm{k}
$$

Ans.

Ans.

$$
\varsigma+\sum M_{A}=0 ; \quad C_{y}(18)-4(18)(9)-2(9)(4.5)-3.75(9)=0
$$

$$
C_{y}=42.375 \mathrm{k}=42.4 \mathrm{k}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad A_{y}+42.375-4(18)=0
$$

$$
A_{y}=29.625 \mathrm{k}=29.6 \mathrm{k}
$$

Ans.

10-14. Determine the reactions at the supports. $E I$ is constant.

Compatibility Equation:

$(+\downarrow) \quad 0=\Delta_{C}-C_{y} f_{C C}$

Use virtual work method
$\Delta_{C}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{10} \frac{\left(x_{1}\right)\left(-0.25 x_{1}{ }^{2}\right)}{E I} d x_{1}=\frac{-625}{E I}$
$f_{C C}=\int_{0}^{L} \frac{m m}{E I} d x=\int_{0}^{10} \frac{\left(x_{1}\right)^{2}}{E I} d x_{1}=\frac{333.33}{E I}$
From Eq. $1 \quad 0=\frac{625}{E I}-\frac{333.33}{E I} C_{y}$
$C_{y}=1.875 \mathrm{k}$
$A_{x}=3.00 \mathrm{k}$
$A_{y}=3.125 \mathrm{k}$
$M_{A}=6.25 \mathrm{k} \cdot \mathrm{ft}$

Ans.
Ans.
Ans.
Ans.

10-15. Determine the reactions at the supports, then draw the moment diagram for each member. $E I$ is constant.

Compatibility Equation:

$(+\downarrow) \quad 0=\Delta_{A}-A_{y} f_{A A}$

Use virtual work method
$\Delta_{A}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{8} \frac{\left(8+x_{2}\right)\left(-10 x_{2}\right)}{E I} d x_{2}+\int_{0}^{10} \frac{(16)(-80)}{E I} d x_{3}=\frac{-17066.67}{E I}$
$f_{A A}=\int_{0}^{L} \frac{m m}{E I} d x=\int_{0}^{8} \frac{\left(x_{1}\right)^{2}}{E I} d x_{1}+\int_{0}^{8} \frac{\left(8+x_{2}\right)^{2}}{E I} d x_{2}+\int_{0}^{10} \frac{(16)^{2}}{E I} d x_{3}=\frac{3925.33}{E I}$
From Eq. $1 \quad 0=\frac{17066.67}{E I}-\frac{3925.33}{E I} A_{y}$
$A_{y}=4.348 \mathrm{k}=4.35 \mathrm{k}$
Ans.
$C_{x}=0 \mathrm{k}$
Ans.
$C_{y}=5.65 \mathrm{k}$
$M_{C}=10.4 \mathrm{k} \cdot \mathrm{ft}$

*10-16. Determine the reactions at the supports. Assume A is fixed connected. E is constant.

Compatibility Equation. Referring to Fig. a, and using the real and virtual moment function shown in Fig. b and c, respectively,
$\Delta^{\prime} C_{v}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{9} \frac{\left(-x_{3}\right)\left[-\left(4 x_{3}^{2}+60\right)\right]}{E I_{A B}} d x_{3}=\frac{8991}{E I_{A B}} \downarrow$
$f_{C C}=\int_{0}^{L} \frac{m m}{E I} d x=\int_{0}^{9 m} \frac{\left(-x_{3}\right)\left(-x_{3}\right)}{E I_{A B}} d x_{3}=\frac{243}{E I_{A B}} \downarrow$

Using the principle of superposition,

$$
\Delta_{C_{v}}=\Delta^{\prime} C_{v}+C_{y} f_{C C}
$$

$(+\downarrow) \quad 0=\frac{8991}{E I_{A B}}+C_{y}\left(\frac{243}{E I_{A B}}\right)$
$C_{y}=-37.0 \mathrm{kN}=37.0 \mathrm{kN} \uparrow$
Ans.

Equilibrium. Referring to the FBD of the frame in Fig. d,
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-20=0 \quad A_{x}=20 \mathrm{kN}$
$\zeta+\sum M_{A}=0 ; \quad M_{A}+37.0(9)-8(9)(4.5)-20(3)=0$

$$
M_{A}=51.0 \mathrm{kN} \cdot \mathrm{~m}
$$

$+\uparrow \sum F_{y}=0 ; \quad A_{y}+37.0-8(9)=0 \quad A_{y}=35.0 \mathrm{kN}$

Ans.

Ans.

Ans.

10-16. Continued

(b)

10-17. Determine the reactions at the supports. $E I$ is constant.

Compatibility Equation:

$(+\downarrow) \quad 0=\Delta_{C}-C_{y} f_{C C}$
Use virtual work method:
$\Delta_{C}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{9} \frac{\left(-x_{1}+9\right)\left(72 x_{1}-4 x_{1}^{2}-396\right)}{E I} d x_{1}=\frac{-9477}{E I}$
$f_{C C}=\int_{0}^{L} \frac{m m}{E I} d x=\int_{0}^{9} \frac{\left(-x_{1}+9\right)^{2}}{E I} d x_{1}=\frac{243.0}{E I}$
From Eq. $1 \quad 0=\frac{9477}{E I}-\frac{243.0}{E I} C_{y}$

$$
C_{y}=39.0 \mathrm{kN}
$$

$$
A_{y}=33.0 \mathrm{kN}
$$

$$
A_{x}=24.0 \mathrm{kN}
$$

$$
M_{A}=45.0 \mathrm{kN} \cdot \mathrm{~m}
$$

10-18. Determine the reactions at the supports A and D. The moment of inertia of each segment of the frame is listed in the figure. Take $E=29\left(10^{3}\right) \mathrm{ksi}$.
$\Delta_{A}=\int_{0}^{L} \frac{m M}{E I} d x=0+\int_{0}^{10} \frac{(l x)\left(\frac{3}{2} x^{2}\right)}{E I_{B C}} d x+\int_{0}^{10} \frac{(10)(170-2 x)}{E I_{C D}} d x$

$$
=\frac{18.8125}{E I_{C D}}
$$

$f_{A A}=\int_{0}^{L} \frac{m^{2}}{E I} d x=0+\int_{0}^{10} \frac{x^{2}}{E I_{B C}} d x+\int_{0}^{10} \frac{10^{2}}{E I_{C D}} d x=\frac{1250}{E I_{C D}}$
$+\downarrow \Delta_{A}+A_{y} f_{A A}=0$
$\frac{18,812.5}{E I_{C D}}+A_{y}\left(\frac{1250}{E I_{C D}}\right)=0$
$A_{y}=-15.0 \mathrm{k}$
$D_{y}=15.0 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad-30+15+D_{y}=0 ;$
Ans.
Ans.
$\xrightarrow{+} \sum F_{x}=0 ; \quad D_{x}=2 \mathrm{k}$
Ans.
C $+\sum M_{D}=0 ; \quad 15.0(10)-2(10)-30(5)+M_{D}=0 ; \quad M_{D}=19.5 \mathrm{k} \cdot \mathrm{ft}$
Ans.

10-19. The steel frame supports the loading shown. Determine the horizontal and vertical components of reaction at the supports A and D. Draw the moment diagram for the frame members. E is constant.

Compatibility Equation:

$\Delta_{D}+D_{x} f_{D D}=0$
Use virtual work method:
$\Delta_{D}=\int_{0}^{L} \frac{m M}{E I} d x=0+\int_{0}^{15} \frac{12\left(22.5 x-1.5 x^{2}\right)}{E\left(2 I_{1}\right)} d x+0=\frac{5062.5}{E I_{1}}$
$f_{D D}=\int_{0}^{L} \frac{m m}{E I} d x=2 \int_{0}^{12} \frac{(1 x)^{2}}{E I_{1}} d x+\int_{0}^{15} \frac{(12)^{2}}{E\left(2 I_{1}\right)} d x=\frac{2232}{E I_{1}}$

From Eq. 1
$\frac{5062.5}{E I_{1}}+D_{x} \frac{2232}{E I_{1}}=0$
$D_{x}=-2.268 \mathrm{k}=-2.27 \mathrm{k}$
$\varsigma+\sum M_{A}=0 ; \quad-45(7.5)+D_{y}(15)=0 \quad D_{y}=22.5 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad 22.5-45+A_{y}=0 ;$
$A_{y}=22.5 \mathrm{k}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-2.268=0 ; \quad A_{x}=2.27 \mathrm{k}$

Ans.
Ans.

Ans.
Ans.
*10-20. Determine the reactions at the supports. Assume A and B are pins and the joints at C and D are fixed connections. $E I$ is constant.

Compatibility Condition: Referring to Fig. a, the real and virtual moment functions shown in Fig. b and c, respectively,

$\Delta^{\prime}{ }_{B_{h}}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{12 \mathrm{ft}} \frac{x_{1}\left(18 x_{1}-0.75 x_{1}^{2}\right)}{E I} d x_{1}+\int_{0}^{15 \mathrm{ft}} \frac{12\left(7.20 x_{2}\right)}{E I} d x_{2}+0$

$$
=\frac{16200}{E I} \rightarrow
$$

$f_{B B}=\int_{0}^{L} \frac{m m}{E I} d x=\int_{0}^{12 \mathrm{ft}} \frac{x_{1}\left(x_{1}\right)}{E I} d x_{1}+\int_{0}^{15 \mathrm{ft}} \frac{12(12)}{E I} d x_{2}+\int_{0}^{12 \mathrm{ft}} \frac{x_{3}\left(x_{3}\right)}{E I} d x_{3}$
Using the principle of superposition, Fig. a,
$\Delta_{B_{h}}=\Delta^{\prime}{ }_{B h}+B_{x} f_{B B}$
$(\stackrel{+}{\rightarrow}) \quad 0=\frac{16200}{E I}+B_{x}\left(\frac{3312}{E I}\right)$
$B_{x}=-4.891 \mathrm{k}=4.89 \mathrm{k} \leftarrow$
Ans.
Equilibrium: Referring to the FBD of the frame in Fig. d,
$\xrightarrow{+} \sum F_{x}=0 ;$
$15(12)-4.891-A_{x}=0$
$A_{x}=13.11 \mathrm{k}=13.1 \mathrm{k}$
Ans.
$\varsigma+\sum M_{A}=0 ; \quad B_{y}(15)-1.5(12)(6)=0 \quad B_{y}=7.20 \mathrm{k}$
Ans.
$+\uparrow \sum F_{y}=0 ;$
$7.20-A_{y}=0$
$A_{y}=7.20 \mathrm{k}$
Ans.

10-20. Continued

(C)

(a)

10-21. Determine the reactions at the supports. Assume A and D are pins. $E I$ is constant.

Compatibility Equation: Referring to Fig. a, and the real and virtual moment functions shown in Fig. b and c, respectively.

$$
\begin{aligned}
\Delta^{\prime} D_{h}=\int_{0}^{L} \frac{m M}{E I} d x= & \int_{0}^{15 \mathrm{ft}} \frac{\left(x_{1}\right)\left(8 x_{1}\right)}{E I} d x_{1}+\int_{0}^{20 \mathrm{ft}} \frac{\left(0.25 x_{2}+10\right)\left(6 x_{2}\right)}{E I} d x_{2}+0 \\
= & \frac{25000}{E I} \rightarrow \\
f_{D D}=\int_{0}^{L} \frac{m m}{E I} d x= & \int_{0}^{15 \mathrm{ft}} \frac{\left(x_{1}\right)\left(x_{1}\right)}{E I} d x_{1}+\int_{0}^{20 \mathrm{ft}} \frac{\left(0.25 x_{2}+10\right)\left(0.25 x_{2}+10\right)}{E I} d x_{2} \\
& \quad+\int_{0}^{10 \mathrm{ft}\left(x_{3}\right)\left(x_{3}\right)} \underset{E I}{ } d x_{3} \\
= & \frac{4625}{E I} \rightarrow
\end{aligned}
$$

Using the principle of superposition, Fig. a,
$\Delta_{D_{h}}=\Delta^{\prime}{ }_{D h}+D_{x} f_{D D}$
$(\stackrel{+}{\rightarrow}) \quad 0=\frac{25000}{E I}+D_{x}\left(\frac{4625}{E I}\right)$

$$
D_{x}=-5.405 \mathrm{k}=5.41 \mathrm{k} \quad \leftarrow
$$

Ans.

Equilibrium:

$\xrightarrow{+} \sum F_{x}=0 ; 8-5.405-A_{x}=0 \quad A_{x}=2.5946 \mathrm{k}=2.59 \mathrm{k}$ Ans.
$\varsigma+\sum M_{A}=0 ; \quad D_{y}(20)+5.405(5)-8(15)=0 \quad D_{y}=4.649 \mathrm{k}=4.65 \mathrm{k} \quad$ Ans.
$+\uparrow \sum F_{y}=0 ; \quad 4.649-A_{y}=0 \quad A_{y}=4.649 \mathrm{k}=4.65 \mathrm{k}$
Ans.

10-21. Continued

10-22. Determine the reactions at the supports. Assume A and B are pins. $E I$ is constant.
 functions shown in Fig. b and c, respectively,

$$
\begin{aligned}
\Delta_{B_{h}}^{\prime}=\int_{0}^{L} \frac{m M}{E I} d x=0 & +\int_{0}^{3 \mathrm{~m}} \frac{(-4)(-20)}{E I} d x_{2}+0=\frac{240}{E I} \\
f_{B B}=\int_{0}^{L} \frac{m m}{E I} d x= & \int_{0}^{4 \mathrm{~m}} \frac{\left(-x_{1}\right)\left(-x_{1}\right)}{E I} d x_{1}+\int_{0}^{3 \mathrm{~m}} \frac{(-4)(-4)}{E I} d x_{2} \\
& +\int_{0}^{4 \mathrm{~m}} \frac{\left(-x_{3}\right)\left(-x_{3}\right)}{E I} d x_{3} \\
= & \frac{90.67}{E I} \leftarrow
\end{aligned}
$$

Applying the principle of superposition, Fig. a,
$\Delta_{B_{h}}=\Delta_{B_{h}}+B_{x} f_{B B}$
$(\pm) \quad 0=\frac{240}{E I}+B_{x}\left(\frac{90.67}{E I}\right)$

$$
B_{x}=-2.647 \mathrm{kN}=2.65 \mathrm{kN} \quad \rightarrow
$$

Ans.
Equilibrium: Referring to the FBD of the frame shown in Fig. d,
$\pm \sum F_{x}=0 ;$
$A_{x}-2.647=0$
$A_{x}=2.647 \mathrm{kN}=2.65 \mathrm{kN}$
$\zeta+\sum M_{A}=0 ;$
$B_{y}(3)+20-20=0 \quad B_{y}=0$
$+\uparrow \sum F_{y}=0 ;$
$A_{y}=0$

Ans.
Ans.

Ans.

10-22. Continued

(a)

10-23. Determine the reactions at the supports. Assume A and B are pins. $E I$ is constant.

Compatibility Equation: Referring to Fig. a, and the real and virtual moment functions in Fig. b and c, respectively,

$$
\begin{aligned}
\Delta^{\prime} B_{h}=\int_{0}^{L} \frac{m M}{E I} d x & =0+\int_{0}^{5 \mathrm{~m}} \frac{4\left(7.50 x_{2}-0.3 x_{2}^{3}\right)}{E I} d x_{2}+0=\frac{187.5}{E I} \rightarrow \\
f_{B B}=\int_{0}^{L} \frac{m m}{E I} d x & =\int_{0}^{4 \mathrm{~m}} \frac{\left(x_{1}\right)\left(x_{1}\right)}{E I} d x_{1}+\int_{0}^{5 \mathrm{~m}} \frac{4(4)}{E I} d x_{2}+\int_{0}^{4 \mathrm{~m}} \frac{\left(x_{3}\right)\left(x_{3}\right)}{E I} d x_{3} \\
& =\frac{122.07}{E I} \rightarrow
\end{aligned}
$$

Applying to the principle of superposition, Fig. a,
$\Delta_{B_{h}}=\Delta_{B_{h}}^{\prime}+B_{x} f_{B B}$
$(\xrightarrow{+}) \quad 0=\frac{187.5}{E I}+B_{x}\left(\frac{122.07}{E I}\right)$

$$
B_{x}=-1.529 \mathrm{kN}=1.53 \mathrm{kN} \leftarrow
$$

Ans.
Equilibrium: Referring to the FBD of the frame in Fig. d,
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-1.529=0$
$A_{x}=1.529 \mathrm{kN}=1.53 \mathrm{kN}$
Ans.
$\varsigma+\sum M_{A}=0 ; \quad B_{y}(5)-\frac{1}{2}(9)(5)(1.667)=0 \quad B_{y}=7.50 \mathrm{kN}$
Ans.
$\varsigma+\sum M_{B}=0 ; \quad \frac{1}{2}(9)(5)(3.333)-A_{y}(5)=0 \quad A_{y}=15.0 \mathrm{kN}$
Ans.

*10-24. Two boards each having the same $E I$ and length L are crossed perpendicular to each other as shown. Determine the vertical reactions at the supports. Assume the boards just touch each other before the load \mathbf{P} is applied.

$\Delta_{E}{ }^{\prime}=\Delta_{E}{ }^{\prime}$
$\Delta_{E}^{\prime}=M_{E^{\prime}}=-\frac{\left(P-E_{y}\right) L^{2}}{16 E I}\left(\frac{L}{2}\right)+\frac{\left(P-E_{y}\right) L^{2}}{16 E I}\left(\frac{L}{6}\right)$
$=-\frac{\left(P-E_{y}\right) L^{3}}{48 E I}$

$\Delta_{E}^{\prime \prime}=M_{E^{\prime \prime}}=\frac{E_{y} L^{2}}{16 E I}\left(\frac{L}{6}\right)-\frac{E_{y} L^{2}}{16 E I}\left(\frac{L}{2}\right)$

$$
=-\frac{E_{y} L^{3}}{48 E I}
$$

$$
\Delta_{E}{ }^{\prime}=\Delta_{E}{ }^{\prime \prime}
$$

$-\frac{\left(P-E_{y}\right) L^{3}}{48 E I}=-\frac{E_{y} L^{3}}{48 E I}$
$-\left(P-E_{y}\right)=-E_{y}$

$$
E_{y}=\frac{P}{2}
$$

For equilibrium:
$A_{y}=B_{y}=C_{y}=D_{y}=\frac{P}{4}$

10-25. Determine the force in each member of the truss.
$A E$ is constant.

Compatibility Equation:

$0=\Delta_{A B}+F_{A B} f_{A B A B}$
Use virtual work method:
$\Delta_{A B}=\sum \frac{n N L}{A E}=\frac{(1.0)(1.333)(5)}{A E}+\frac{(-1.6)(-1.067)(4)}{A E}=\frac{13.493}{A E}$
$f_{A B A B}=\sum \frac{n n L}{A E}=\frac{2(1)^{2}(5)}{A E}+\frac{(-1.6)^{2}(4)}{A E}=\frac{20.24}{A E}$
From Eq. $1 \quad 0=\frac{13.493}{A E}+\frac{20.24}{A E} F_{A B}$
$F_{A B}=-0.667 \mathrm{k}=0.667 \mathrm{k}(\mathrm{C})$

Joint B:

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & \frac{3}{5} F_{B D}+\left(\frac{3}{5}\right) 0.6666-0.8=0 \\
& F_{B D}=0.667 \mathrm{k}(\mathrm{~T}) \\
+\sum F_{x}=0 ; & F_{B C}=0
\end{array}
$$

10-26. Determine the force in each member of the truss. The cross-sectional area of each member is indicated in the figure. $E=29\left(10^{3}\right)$ ksi. Assume the members are pin connected at their ends.

$$
\begin{aligned}
\Delta_{C B}=\sum \frac{n N L}{A E}= & \frac{1}{E}\left[\frac{(1.33)(10.67)(4)}{1}+\frac{(1.33)(-6)(4)}{1}+\frac{(1)(8)(3)}{1}\right] \\
& +\left[\frac{(-1.667)(-13.33)(5)}{2}\right] \\
= & \frac{104.4}{E} \\
f_{C B C B}=\sum \frac{n^{2} L}{A E}= & \frac{1}{E}\left[\frac{2(1.33)^{2}(4)}{1}+\frac{2(1)^{2}(3)}{1}+\frac{2(-1.667)^{2}(5)}{2}\right] \\
& =\frac{34.1}{E} \\
\Delta_{C B}+ & F_{C B} f_{C B C B}=0 \\
\frac{104.4}{E}+ & F_{C B}\left(\frac{34.1}{E}\right)=0 \\
F_{C B}= & -3.062 \mathrm{k}=3.06 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Ans.

Joint C :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & \frac{3}{5} F_{A C}-8+3.062=0 \\
& F_{A C}=823 \mathrm{k}(\mathrm{C}) \\
+\sum F_{x}=0 ; & \frac{4}{5}(8.23)-F_{D C}=0 \\
& F_{D C}=6.58 \mathrm{k}(\mathrm{~T})
\end{array}
$$

Joint B:

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & -3.062+\left(\frac{3}{5}\right)\left(F_{D B}\right)=0 ; \\
& F_{D B}=5.103 \mathrm{k}=5.10 \mathrm{k}(\mathrm{~T}) \\
+\sum F_{x}=0 ; & F_{A B}-6-5.103\left(\frac{4}{5}\right)=0 ; \\
& F_{A B}=10.1 \mathrm{k}(\mathrm{C})
\end{array}
$$

Joint A:

$$
\begin{array}{cc}
+\uparrow \sum F_{y}=0 ; & -8.23+\left(\frac{3}{5}\right) F_{D A}=0 ; \\
& F_{D A}=4.94 \mathrm{k}(\mathrm{~T})
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

10-27. Determine the force in member $A C$ of the truss. $A E$ is constant.

Applying the principle of superposition, Fig. a
$\Delta_{A C}=\Delta^{\prime}{ }_{A C}+F_{A C} f_{A C A C}$
$0=\frac{168.67}{A E}+F_{A C}\left(\frac{21.32}{A E}\right)$

$$
F_{A C}=-7.911 \mathrm{kN}=7.91 \mathrm{kN}(\mathrm{C})
$$

(a)

10-27. Continued

(b)

(C)
*10-28. Determine the force in member $A D$ of the truss. The cross-sectional area of each member is shown in the figure. Assume the members are pin connected at their ends. Take $E=29\left(10^{3}\right)$ ksi.

$$
\begin{aligned}
\Delta_{A D}=\sum \frac{n N L}{A E}= & \frac{1}{E}\left[\frac{1}{2}(-0.8)(2.5)(4)+(2)\left(\frac{1}{2}\right)(-0.6)(1.875)(3)\right. \\
& +\frac{1}{2}(-0.8)(5)(4)+\frac{1}{3}(1)(-3.125)(5) \\
= & -\frac{20.583}{E}
\end{aligned}
$$

$$
f_{A D A D}=\sum \frac{n^{2} L}{A E}=\frac{1}{E}\left[2\left(\frac{1}{2}\right)(-0.8)^{2}(4)+2\left(\frac{1}{2}\right)(-0.6)^{2}(3)+2\left(\frac{1}{3}\right)(1)^{2}(5)\right]
$$

$$
=\frac{6.973}{E}
$$

$$
\Delta_{A D}+F_{A D} f_{A D A D}=0
$$

$$
-\frac{20.583}{E}+F_{A D}\left(\frac{6.973}{E}\right)=0
$$

$$
F_{A D}=2.95 \mathrm{kN}(\mathrm{~T})
$$

Ans.

10-29. Determine the force in each member of the truss. Assume the members are pin connected at their ends. $A E$ is constant.

Compatibility Equation:

$0=\Delta_{A D}+F_{A D} f_{A D A D}$
(1)

$\Delta_{A D}=\sum \frac{n N L}{A E}=\frac{(-0.7071)(-10)(2)}{A E}+\frac{(-0.7071)(-20)(2)}{A E}+\frac{(1)(14.142)(2.828)}{A E}$

$$
=\frac{82.43}{A E}
$$

$f_{A D A D}=\sum \frac{n n L}{A E}=\frac{4(-0.7071)^{2}(2)}{A E}+\frac{2(1)^{2}(2.828)}{A E}=\frac{9.657}{A E}$
From Eq. 1
$0=\frac{82.43}{A E}+\frac{9.657}{A E} F_{A D}$
$F_{A D}=-8.536 \mathrm{kN}=8.54 \mathrm{kN}(\mathrm{C})$
Joint A :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{A E}-8.536 \sin 45^{\circ}=0 \\
& F_{A E}=6.04 \mathrm{kN}(\mathrm{~T}) \\
+\sum F_{x}=0 ; & F_{A B}-8.536 \cos 45^{\circ}=0 \\
& F_{A B}=6.036 \mathrm{kN}=6.04 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Joint C :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & -F_{C B} \sin 45^{\circ}-15+25=0 \\
& F_{C B}=14.14 \mathrm{kN}=14.1 \mathrm{kN}(\mathrm{~T}) \\
+\sum F_{x}=0 ; & F_{C D}-14.14 \cos 45^{\circ}=0 \\
& F_{C D}=10.0 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Ans.

Ans.

¢

Ans.

Ans.

Ans.

10-29. Continued

Joint B :

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & F_{B E} \cos 45^{\circ}+6.036-14.14 \cos 45^{\circ}=0 \\
+\uparrow \sum F_{y}=0 ; & F_{B E}=5.606 \mathrm{kN}=5.61 \mathrm{kN}(\mathrm{~T}) \\
& -F_{B D}+5.606 \sin 45^{\circ}+14.14 \sin 45^{\circ}=0 \\
& F_{B D}=13.96 \mathrm{kN}=14.0 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Joint \boldsymbol{D} :

$$
\begin{array}{ll}
+\sum \sum F_{x}=0 ; & F_{D E}+8.536 \cos 45^{\circ}-10=0 \\
& F_{D E}=3.96 \mathrm{kN}(\mathrm{C}) \\
+\uparrow \sum F_{y}=0 ; & 8.536 \sin 45^{\circ}+13.96-20=0
\end{array}
$$

Ans.

Ans.

Ans.

10-30. Determine the force in each member of the pinconnected truss. $A E$ is constant.

$$
\begin{aligned}
& \Delta_{A C}=\sum \frac{n N L}{A E}=\frac{1}{A E}[(-0.707)(1.414)(3)(4)+(1)(-2) \sqrt{18}] \\
&=-\frac{20.485}{A E} \\
& f_{A C A C}=\sum \frac{n^{2} L}{A E}=\frac{1}{A E}\left[4(-0.707)^{2}(3)+2(1)^{2} \sqrt{18}\right] \\
&=\frac{14.485}{A E} \\
&-\frac{\Delta_{A C}}{A E .485} \\
& A E \\
& F_{A C} F_{A C A C}=0 \\
& F_{A C}=1.414 \mathrm{k}=1.41 \mathrm{k}(\mathrm{~T})
\end{aligned}
$$

Joint C :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{D C}=F_{C B}=F \\
\stackrel{+}{+} \sum F_{x}=0 ; & 2-1.414-2 F\left(\cos 45^{\circ}\right)=0 ; \\
& F_{D C}=F_{C B}=0.414 \mathrm{k}(\mathrm{~T})
\end{array}
$$

Due to symmetry:

$$
F_{A D}=F_{A B}=0.414 \mathrm{k}(\mathrm{~T})
$$

Joint \boldsymbol{D} :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{D B}-2(0.414)\left(\cos 45^{\circ}\right)=0 ; \\
& F_{D B}=0.586 \mathrm{k}(\mathrm{C})
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

10-31. Determine the force in member $C D$ of the truss. $A E$ is constant.

Compatibility Equation: Referring to Fig. a and using the real and virtual force in each member shown in Fig. b and c, respectively,

$$
\begin{gathered}
\Delta_{C D}^{\prime}=\sum \frac{n N L}{A E}=2\left[\frac{0.8333(-7.50)(5)}{A E}\right]+\frac{(-0.3810)(6.00)(8)}{A E}=-\frac{80.786}{A E} \\
f_{C D C D}=\sum \frac{n^{2} L}{A E}=2\left[\frac{(-0.5759)^{2}(\sqrt{65})}{A E}\right]+2\left[\frac{0.8333^{2}(5)}{A E}\right] \\
+\frac{(-0.3810)^{2}(8)}{A E}+\frac{1^{2}(4)}{A E}=\frac{17.453}{A E}
\end{gathered}
$$

Applying the principle of superposition, Fig. a,

$$
\begin{aligned}
& \Delta_{C D}=\Delta_{C D}^{\prime}+F_{C D} f_{C D C D} \\
& 0=-\frac{80.786}{A E}+F_{C D}\left(\frac{17.453}{A E}\right) \\
& F_{C D}=4.63 \mathrm{kN}(\mathrm{~T})
\end{aligned}
$$

(a)

(b)

(C)
*10-32. Determine the force in member $G B$ of the truss. $A E$ is constant.

Compatibility Equation: Referring to Fig. a, and using the real and virtual force in each member shown in Fig. b and c, respectively,

$$
\begin{aligned}
\Delta_{G B}^{\prime}=\sum \frac{n N L}{A E}=\frac{1}{A E}[& (-0.7071)(10)(10)+(-0.7071)(16.25)(10) \\
& +0.7071(13.75)(10)+0.7071(5)(10)+0.7071(-22.5)(10) \\
& +(-0.7071)(-22.5)(10)+1(8.839)(14.14) \\
& +(-1)(12.37)(14.14)] \\
= & -\frac{103.03}{A E} \\
f_{G B G B}=\sum \frac{n^{2} L}{A E}= & 3\left[\frac{0.7071^{2}(10)}{A E}\right]+3\left[\frac{(-0.7071)^{2}(10)}{A E}\right]+2\left[\frac{(-1)^{2}(14.14)}{A E}\right] \\
& +2\left[\frac{\left(1^{2}\right)(14.14)}{A E}\right] \\
= & \frac{86.57}{A E}
\end{aligned}
$$

Applying the principle of superposition, Fig. a
$\Delta_{G B}=\Delta_{G B}+F_{G B} f_{G B G B}$

$$
\begin{aligned}
0 & =\frac{-103.03}{A E}+F_{G B}\left(\frac{86.57}{A E}\right) \\
F_{G B} & =1.190 \mathrm{k}=1.19 \mathrm{k}(T)
\end{aligned}
$$

(b)

10-33. The cantilevered beam $A B$ is additionally supported using two tie rods. Determine the force in each of these rods. Neglect axial compression and shear in the beam. For the beam, $I_{b}=200\left(10^{6}\right) \mathrm{mm}^{4}$, and for each tie rod, $A=100 \mathrm{~mm}^{2}$. Take $E=200 \mathrm{GPa}$.

Compatibility Equations:

$\Delta_{D B}+F_{D B} f_{D B D B}+F_{C B} f_{D B D B}=0$
$\Delta_{C B}+F_{D B} f_{C B D B}+F_{C B} f_{C B C B}=0$

Use virtual work method
$\Delta_{D B}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{4} \frac{(0.6 x)(-80 x)}{E I} d x=-\frac{1024}{E I}$
$\Delta_{C B}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{4} \frac{(1 x)(-80 x)}{E I} d x=-\frac{1706.67}{E I}$
$f_{C B C B}=\int_{0}^{L} \frac{m m}{E I} d x+\sum \frac{n n L}{A E}=\int_{0}^{4} \frac{(1 x)^{2}}{E I} d x+\frac{(1)^{2}(3)}{A E}=\frac{21.33}{E I}+\frac{3}{A E}$
$f_{D B D B}=\int_{0}^{L} \frac{m m}{E I} d x+\sum \frac{n n L}{A E}=\int_{0}^{4} \frac{(0.6 x)^{2}}{E I} d x+\frac{(1)^{2}(5)}{A E}=\frac{7.68}{E I}+\frac{5}{A E}$
$f_{D B C B}=\int_{0}^{4} \frac{(0.6 x)(1 x)}{E I}=\frac{12.8}{A E}$.

From Eq. 1
$\frac{-1024}{E(200)\left(10^{-4}\right)}+F_{D B}\left[\frac{7.68}{E(200)\left(10^{-4}\right)}+\frac{5}{E(100)\left(10^{-4}\right)}\right]+F_{C B}\left[\frac{12.8}{E(200)\left(10^{-4}\right)}\right]=0$
$0.0884 F_{D B}+0.064 F_{C B}=5.12$

From Eq. 2
$-\frac{1706.67}{E(200)\left(10^{-6}\right)}+F_{D B} \frac{12.8}{E(200)\left(10^{-6}\right)}+F_{C B}\left[\frac{21.33}{E(200)\left(10^{-6}\right)}+\frac{3}{E(200)\left(10^{-6}\right)}\right]=0$
$0.064 F_{D B}+0.13667 F_{C B}=8.533$

Solving
$F_{D B}=19.24 \mathrm{kN}=19.2 \mathrm{kN}$
$F_{C B}=53.43 \mathrm{kN}=53.4 \mathrm{kN}$

Ans.
Ans.

10-34. Determine the force in members $A B, B C$ and $B D$ which is used in conjunction with the beam to carry the 30-k load. The beam has a moment of inertia of $I=600 \mathrm{in}^{4}$, the members $A B$ and $B C$ each have a cross-sectional area of $2 \mathrm{in}^{2}$, and $B D$ has a cross-sectional area of $4 \mathrm{in}^{2}$. Take $E=29\left(10^{3}\right) \mathrm{ksi}$. Neglect the thickness of the beam and its axial compression, and assume all members are pinconnected. Also assume the support at F is a pin and E is a roller.

$$
\begin{aligned}
\begin{aligned}
\Delta=\int_{0}^{L} \frac{m M}{E I}=\sum \frac{n N L}{A E}= & \int_{0}^{3} \frac{(0.57143 x)(40 x)}{E I} d x+\int_{0}^{4} \frac{(0.42857 x)(30 x)}{E I} d x+0 \\
= & \frac{480}{E I}
\end{aligned} \\
\begin{aligned}
f_{B D B D}=\int_{0}^{L} \frac{m^{2}}{E I} d x+\sum \frac{n^{2} L}{A E}= & \int_{0}^{3} \frac{(0.57143 x)^{2} d x}{E I}+\int_{0}^{4} \frac{(0.42857 x)^{2} d x}{E I} \\
& +\frac{(1)^{2}(3)}{4 E}+\frac{(0.80812)^{2} \sqrt{18}}{2 E}+\frac{(0.71429)^{2}(5)}{2 E} \\
& =\frac{6.8571}{E I}+\frac{3.4109}{E}
\end{aligned}
\end{aligned}
$$

$\Delta+F_{B D} f_{B D B D}=0$
$\frac{480\left(12^{3}\right)}{E(600)}+F_{B D}\left(\frac{6.8571\left(12^{3}\right)}{E(600)}+\frac{3.4109(12)}{E}\right)=0$

$$
F_{B D}=-22.78 \mathrm{k}=22.8 \mathrm{k}(C)
$$

Ans.

Joint B :

$$
\begin{array}{cc}
\xrightarrow{+} \sum F_{x}=0 ; & -F_{A B}\left(\frac{1}{\sqrt{2}}\right)+\left(\frac{4}{5}\right) F_{B C}=0 \\
+\uparrow \sum F_{y}=0 ; & 22.78-\left(\frac{3}{5}\right) F_{B C}-F_{A B}\left(\frac{1}{\sqrt{2}}\right)=0 \\
\\
F_{A B}=18.4 \mathrm{k}(\mathrm{~T}) \\
F_{B C}=16.3 \mathrm{k}(\mathrm{~T})
\end{array}
$$

Ans.
Ans.

10-35. The trussed beam supports the uniform distributed loading. If all the truss members have a cross-sectional area of $1.25 \mathrm{in}^{2}$, determine the force in member $B C$. Neglect both the depth and axial compression in the beam. Take $E=29\left(10^{3}\right)$ ksi for all members. Also, for the beam $I_{A D}=750 \mathrm{in}^{4}$. Assume A is a pin and D is a rocker.

Compatibility Equation: Referring to Fig. a, and using the real and virtual loadings in each member shown in Fig. b and c, respectively,

$$
\begin{aligned}
& \Delta_{B C}^{\prime}= \int_{0}^{L} \frac{m M}{E I} d x+\sum \frac{n N L}{A E}=2 \int_{0}^{8 \mathrm{ft}} \frac{(-0.375 x)\left(40 x-25 x^{2}\right)}{E I} d x+0 \\
&=- \frac{3200 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=-\frac{3200\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(750 \mathrm{in}^{2}\right)}=-0.254 \\
& \begin{aligned}
f_{B C B C}=\int_{0}^{L} \frac{m^{2}}{E I} d x+\sum \frac{n^{2} L}{A E} & =2 \int_{0}^{8 \mathrm{ft}} \frac{(-0.375 x)^{2}}{E I} d x \\
& +\frac{1}{A E}\left[1^{2}(8)+2\left(0.625^{2}\right)(5)+2(-0.625)^{2}\right] \\
& =\frac{48 \mathrm{ft}^{3}}{E I}+\frac{15.8125 \mathrm{ft}}{A E} \\
& =\frac{48\left(12^{2}\right) \mathrm{in}^{3}}{\left[29(10)^{3} \mathrm{k} / \mathrm{in}^{3}\right]\left(750 \mathrm{in}^{4}\right)}+\frac{15.8125(12) \mathrm{in}}{\left(1.25 \mathrm{in}^{2}\right)\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]} \\
& =0.009048 \mathrm{in} / \mathrm{k}^{2}
\end{aligned}
\end{aligned}
$$

11

(a)

*10-36. The trussed beam supports a concentrated force of 80 k at its center. Determine the force in each of the three struts and draw the bending-moment diagram for the beam. The struts each have a cross-sectional area of 2 in 2. Assume they are pin connected at their end points. Neglect both the depth of the beam and the effect of axial compression in the beam. Take $E=29\left(10^{3}\right) \mathrm{ksi}$ for both the beam and struts. Also, for the beam $I=400 \mathrm{in}^{4}$.

$\Delta_{C D}=\int_{0}^{L} \frac{m M}{E I} d x+\sum \frac{n N L}{A E}=2 \int_{0}^{12} \frac{(0.5 x)(40 x)}{E I} d x=\frac{23040}{E I}$
$f_{C D C D}=\int_{0}^{L} \frac{m^{2}}{E I} d x+\sum \frac{n^{2} L}{A E}=2 \int_{0}^{12} \frac{(0.5 x)^{2}}{E I} d x+\frac{(1)^{2}(5)}{A E}+\frac{2(1.3)^{2}(13)}{A E}$

$$
=\frac{288}{E I}+\frac{48.94}{A E}
$$

$\Delta_{C D}+F_{C D} f_{C D C D}=0$

$$
\begin{gathered}
=\frac{23,040}{\frac{400}{12^{4}}}+F_{C D}\left(\frac{288}{\frac{400}{12^{4}}}+\frac{48.94}{\frac{2}{14^{4}}}\right)=0 \\
F_{C D}=-64.71=64.7 \mathrm{k}(\mathrm{C})
\end{gathered}
$$

Ans.

Equilibrium of joint C :

$$
F_{C D}=F_{A C}=84.1 \mathrm{k}(\mathrm{~T})
$$

Ans.

10-37. Determine the reactions at support C. $E I$ is constant for both beams.

Support Reactions: $\operatorname{FBD}(\mathrm{a})$.

$$
\begin{array}{ll}
\stackrel{+}{\longrightarrow} \sum F_{x}=0 ; & C_{x}=0 \\
C+\sum M_{A}=0 ; & C_{y}(L)-B_{y}\left(\frac{L}{2}\right)=0
\end{array}
$$

Ans.
[1]

Method of Superposition: Using the method of superposition as discussed in Chapter 4, the required displacements are

$$
\begin{aligned}
& v_{B}=\frac{P L^{3}}{48 E I}=\frac{B_{y} L^{3}}{48 E I} \downarrow \\
& v_{B}^{\prime}=\frac{P L_{3 D}^{3}}{3 E I}=\frac{P\left(\frac{L}{2}\right)^{3}}{3 E I}=\frac{P L^{3}}{24 E I} \downarrow \\
& v_{B}^{\prime \prime}=\frac{P L_{3}^{3} D}{3 E I}=\frac{B_{y} L^{3}}{24 E I} \uparrow
\end{aligned}
$$

The compatibility condition requires
$(+\downarrow)$

$$
\begin{aligned}
v_{B} & =v_{B}^{\prime}+v_{B}^{\prime \prime} \\
\frac{B_{y} L^{3}}{48 E I} & =\frac{P L^{3}}{24 E I}+\left(-\frac{B_{y} L^{3}}{24 E I}\right) \\
B_{y} & =\frac{2 P}{3}
\end{aligned}
$$

Substituting B_{y} into Eq. [1] yields,

$$
C_{y}=\frac{P}{3}
$$

10-38. The beam $A B$ has a moment of inertia $I=475 \mathrm{in}^{4}$ and rests on the smooth supports at its ends. A $0.75-\mathrm{in}$.diameter $\operatorname{rod} C D$ is welded to the center of the beam and to the fixed support at D. If the temperature of the rod is decreased by $150^{\circ} \mathrm{F}$, determine the force developed in the rod. The beam and rod are both made of steel for which $E=200 \mathrm{GPa}$ and $\alpha=6.5\left(10^{-6}\right) / \mathrm{F}^{\circ}$.

Method of Superposition: Using the method of superposition as discussed in Chapter 4, the required displacements are

$$
v_{C}=\frac{P L^{3}}{48 E I}=\frac{F_{C D}\left(120^{3}\right)}{48(29)\left(10^{3}\right)(475)}=0.002613 F_{C D} \quad \downarrow
$$

Using the axial force formula,

$$
\delta_{F}=\frac{P L}{A E}=\frac{F_{C D}(50)}{\frac{6}{4}\left(0.75^{2}\right)(29)\left(10^{3}\right)}=0.003903 F_{C D} \uparrow
$$

The thermal contraction is,

$$
\delta_{T}=\alpha \Delta T L=6.5\left(10^{-6}\right)(150)(50)=0.04875 \text { in. } \quad \downarrow
$$

The compatibility condition requires

$$
\begin{aligned}
(+\downarrow) v_{C} & =\delta_{T}+\delta_{F} \\
0.002613 F_{C D} & =0.04875+\left(-0.003903 F_{C D}\right) \\
F_{C D} & =7.48 \mathrm{kip}
\end{aligned}
$$

II

\dagger

Ans.

10-39. The cantilevered beam is supported at one end by a $\frac{1}{2}$-in.-diameter suspender rod $A C$ and fixed at the other end B. Determine the force in the rod due to a uniform loading of $4 \mathrm{k} / \mathrm{ft} . E=29\left(10^{3}\right) \mathrm{ksi}$ for both the beam and rod.

$$
\begin{aligned}
\Delta_{A C}= & \int_{0}^{L} \frac{m M}{E I} d x+\sum \frac{n N L}{A E}=\int_{0}^{2} \frac{(1 x)\left(-2 x^{2}\right)}{E I} d x+0=-\frac{80.000}{E I} \\
\int_{A C A C}= & \int_{0}^{L} \frac{m^{2}}{E I} d x+\sum \frac{n^{2} L}{A E}=\int_{0}^{20} \frac{x^{2}}{E I} d x+\frac{(1)^{2}(15)}{A E}=\frac{2666.67}{E I}+\frac{15}{A E} \\
+\downarrow & \quad \Delta_{A C}+F_{A C} \int_{A C A C}=0 \\
& -\frac{80.000}{E I}+F_{A C}\left(\frac{2666.67}{E I}+\frac{15}{A E}\right)=0 \\
& -\frac{80.000}{\frac{330}{12^{*}}}+F_{A C}\left(\frac{2666.67}{\frac{350}{17^{*}}}+\frac{15}{\pi\left(\frac{0.23}{12}\right)^{2}}\right)=0 \\
& F_{A C}=28.0 \mathrm{k}
\end{aligned}
$$

*10-40. The structural assembly supports the loading shown. Draw the moment diagrams for each of the beams. Take $I=100\left(10^{6}\right) \mathrm{mm}^{4}$ for the beams and $A=200 \mathrm{~mm}^{2}$ for the tie rod. All members are made of steel for which $E=200 \mathrm{GPa}$.

Compatibility Equation

$0=\Delta_{C B}+F_{C B} f_{C B C B}$
Use virtual work method

$$
\begin{gathered}
\Delta_{C B}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{6} \frac{\left(0.25 x_{1}\right)\left(3.75 x_{1}\right)}{E I} d x_{1}+\int_{0}^{2} \frac{\left(0.75 x_{2}\right)\left(11.25 x_{2}\right)}{E I} d x_{2} \\
\quad+\int_{0}^{6} \frac{\left(1 x_{3}\right)\left(-4 x_{3}^{2}\right)}{E I} d x_{3} \\
=\frac{-1206}{E I} \\
f_{C B C B}=\int_{0}^{L} \frac{m m}{E I} d x+\sum \frac{n n L}{A E}=\int_{0}^{6} \frac{\left(0.25 x_{1}\right)^{2}}{E I} d x_{1}+\int_{0}^{2} \frac{\left(0.75 x_{2}\right)^{2}}{E I} d x_{2} \\
\quad+\int_{0}^{6} \frac{\left(1 x_{3}\right)^{2}}{E I} d x_{3}+\frac{(1)^{2}(4)}{A E} \\
=\frac{78.0}{E I}+\frac{4.00}{A E}
\end{gathered}
$$

From Eq. 1
$-\frac{1206}{E 100\left(10^{-6}\right)}+F_{C B}\left[\frac{78.0}{E(100)\left(10^{-6}\right)}+\frac{4.00}{200\left(10^{-6}\right) E}\right]=0$
$F_{C B}=15.075 \mathrm{kN}(\mathrm{T})=15.1 \mathrm{kN}(\mathrm{T})$

10-41. Draw the influence line for the reaction at C. Plot numerical values at the peaks. Assume A is a pin and B and C are rollers. $E I$ is constant.

The primary real beam and qualitative influence line are shown in Fig. a and its conjugate beam is shown in Fig. b. Referring to Fig. c,
$f_{A C}=M_{A}^{\prime}=0, \quad f_{B C}=M_{B}^{\prime}=0 \quad f_{C C}=M_{C}^{\prime}=\frac{144}{E I}$
The maximum displacement between A and B can be determined by referring to
Fig d.

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad \frac{1}{2}\left(\frac{x}{E I}\right) x-\frac{6}{E I}=0 \quad x=\sqrt{12 \mathrm{~m}} \\
\varsigma+\sum M=0 ; \quad M_{\max }^{\prime}+\frac{6}{E I}(\sqrt{12})-\frac{1}{2}\left(\frac{\sqrt{12}}{E I}\right)(\sqrt{12})\left(\frac{\sqrt{12}}{3}\right)=0 \\
f_{\max }=-\frac{13.86}{E I}
\end{gathered}
$$

Dividing f 's by $f_{C C}$, we obtain

$x(\mathrm{~m})$	0	$\sqrt{12}$	6	12
$C_{y}(\mathrm{kN})$	0	-0.0962	0	1

(b)

(C)

界信

(e)

10-42. Draw the influence line for the moment at A. Plot numerical values at the peaks. Assume A is fixed and the support at B is a roller. $E I$ is constant.

The primary real beam and qualitative influence line are shown in Fig. a and its conjugate beam is shown in Fig. b. Referring to Fig. c,
$\alpha_{A A}=\frac{1}{E I}, \quad f_{A A}=M_{A}^{\prime}=0, \quad f_{B A}=M_{B}^{\prime}=0, \quad f_{C A}=M_{C}^{\prime}=\frac{3}{2 E I}$
The maximum displacement between A and B can be determined by referring to
Fig. d,

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & \frac{1}{2}\left(\frac{x}{3 E I}\right) x-\frac{1}{2 E I}=0 \quad x=\sqrt{3 \mathrm{~m}} \\
\zeta+\sum M=0 ; & \frac{1}{2}\left(\frac{\sqrt{3}}{3 E I}\right)(\sqrt{3})\left(\frac{\sqrt{3}}{3}\right)-\frac{1}{2 E I}(\sqrt{3})-M_{\max }^{\prime}=0 \\
& f_{\max }=M_{\max }^{\prime}=-\frac{0.5774}{E I}
\end{array}
$$

Dividing f 's by $\alpha_{A A}$, we obtain

$x(\mathrm{~m})$	0	1.268	3	6
$M_{A}(\mathrm{kN} \cdot \mathrm{m})$	0	-0.577	0	1.50

(a)

10-43. Draw the influence line for the vertical reaction at B. Plot numerical values at the peaks. Assume A is fixed and the support at B is a roller. $E I$ is constant.

The primary real bean and qualitative influence line are shown in Fig. a and its conjugate beam is shown in Fig. b. Referring to Fig. c,
$\zeta+\sum M_{B}=0 ; \quad M_{B}^{\prime}-\frac{1}{2}\left(\frac{3}{E I}\right)(3)(2)=0 \quad f_{B B}=M_{B}^{\prime}=\frac{9}{E I}$
Referring to Fig. d,

$$
\varsigma+\sum M_{C}=0 ; \quad M_{C}^{\prime}-\frac{1}{2}\left(\frac{3}{E I}\right)(3)(5)=0 \quad f_{C B}=M_{C}^{\prime}=\frac{22.5}{E I}
$$

Also, $f_{A B}=0$. Dividing f 's by $f_{B B}$, we obtain

$x(\mathrm{~m})$	0	3	6
$B_{y}(\mathrm{kN})$	0	1	2.5

(a)

(b)

(C)

*10-44. Draw the influence line for the shear at C. Plot numerical values every 1.5 m . Assume A is fixed and the support at B is a roller. $E I$ is constant.

The primary real beam and qualitative influence line are shown in Fig. a, and its conjugate beam is shown in Fig. b. Referring to Figs. c, d, e and f,
$f_{O C}=M_{0}^{\prime}=0 \quad f_{1.5 C}=M_{1.5}^{\prime}=-\frac{6.1875}{E I} \quad f_{3 \bar{C}}=M_{3^{-}}^{\prime}=--\frac{22.5}{E I}$
$f_{3}{ }^{+}=M^{\prime}{ }_{3+}=\frac{49.5}{E I} \quad f_{4.5 C}=M^{\prime}{ }_{4.5}=\frac{26.4375}{E I} \quad f_{6 C}=M^{\prime}{ }_{6}=0$
Dividing f 's by $M_{0}^{\prime}=\frac{72}{E I}$, we obtain

$x(\mathrm{~m})$	0	1.5	3^{-}	3^{+}	4.5	6
$V_{C}(\mathrm{kN})$	0	-0.0859	-0.3125	0.6875	0.367	0

(a)

(C)

(d)

10-44. Continued

10-45. Draw the influence line for the reaction at C. Plot the numerical values every 5 ft . $E I$ is constant.

$x=0 \mathrm{ft}$
$\Delta_{0}=M_{0}{ }^{\prime}=0$
$x=5 \mathrm{ft}$
$\Delta_{5}=M_{5}{ }^{\prime}=\frac{12.5}{E I} 1.667-\frac{37.5}{E I}(5)=-\frac{166.67}{E I}$
$x=10 \mathrm{ft}$
$\Delta_{10}=M_{10}{ }^{\prime}=\frac{50}{E I} 3.333-\frac{37.5}{E I}(10)=-\frac{208.33}{E I}$

10-45. Continued

$$
\begin{aligned}
& x=15 \mathrm{ft} \\
& \Delta_{15}=M_{15}{ }^{\prime}=0 \\
& x=20 \mathrm{ft} \\
& \Delta_{20}=M_{20}{ }^{\prime}=\frac{2250}{E I}+\frac{50}{E I} 3.333-\frac{187.5}{E I}(10)=\frac{541.67}{E I} \\
& x=25 \mathrm{ft} \\
& \Delta_{25}=M_{25}{ }^{\prime}=\frac{2250}{E I}+\frac{12.5}{E I} 1.667-\frac{187.5}{E I}(5)=\frac{1333.33}{E I} \\
& x=30 \mathrm{ft} \\
& \Delta_{30}=M_{30^{\prime}}=\frac{2250}{E I} \\
& x \quad \Delta_{i} / \Delta_{30} \\
& 0 \quad 0 \\
& 5 \quad-0.0741 \\
& 10 \quad-0.0926 \\
& \begin{array}{ll}
15 & 0 \\
20 & 0.241
\end{array} \\
& 25 \quad 0.593 \\
& 30 \quad 1.0 \\
& \text { At } 20 \mathrm{ft}: \quad C_{y}=0.241 \mathrm{k}
\end{aligned}
$$

Ans.

10-46. Sketch the influence line for (a) the moment at E, (b) the reaction at C, and (c) the shear at E. In each case, indicate on a sketch of the beam where a uniform distributed live load should be placed so as to cause a maximum positive value of these functions. Assume the beam is fixed at D.

10-46. Continued

10-47. Sketch the influence line for (a) the vertical reaction at C, (b) the moment at B, and (c) the shear at E. In each case, indicate on a sketch of the beam where a uniform distributed live load should be placed so as to cause a maximum positive value of these functions. Assume the beam is fixed at F.

(a)

(c)

*10-48. Use the Müller-Breslau principle to sketch the general shape of the influence line for (a) the moment at A and (b) the shear at B.

10-49. Use the Müller-Breslau principle to sketch the general shape of the influence line for (a) the moment at A and (b) the shear at B.

10-50. Use the Müller-Breslau principle to sketch the general shape of the influence line for (a) the moment at A and (b) the shear at B.

(a)

(b)

10-51. Use the Müller-Breslau principle to sketch the general shape of the influence line for (a) the moment at A and (b) the shear at B.

(a)

